BUCK電路EMI輻射干擾分析實(shí)例
BUCK電路EMI輻射干擾分析實(shí)例
下面將示范在Buck轉(zhuǎn)換器的EMI設(shè)計(jì)中的不同方法所導(dǎo)致的影響。示范所使用的IC是RT7297CHZSP,一款800kHz工作頻率、3A輸出能力的電流模式Buck轉(zhuǎn)換器,采用PSOP-8封裝。測試中的電路工作在12V輸入下,輸出為3.3V/3A,測試所用電路顯示在圖12中。
測試所用的板子有兩個(gè)版本,一個(gè)具有完整的地銅箔層,一個(gè)沒有。板上設(shè)置了多種可選配置,如LC輸入濾波器,不同的輸入電容放置位置,可選的Rboot、RC緩沖電路和輸出端LC濾波器。具有這些不同選項(xiàng)的PCB設(shè)計(jì)顯示在圖13中。
測試設(shè)備的配置如圖 14 所示。
當(dāng)被測試對象被放在實(shí)驗(yàn)桌上時(shí),其PCB上的電流回路和導(dǎo)線就會向周圍環(huán)境輻射出高頻能量,這些輻射信號又會自己找到路徑返回到測試對象上,并以高頻共模電流的形式出現(xiàn)在供電線上。這些供電線上的高頻共模電流會和板上的電流結(jié)合在一起,可被用著輻射狀況的指示信號。
轉(zhuǎn)換器的電源輸入來自于三只串聯(lián)的鋰離子電池,電壓大約為12V,這就使它們和實(shí)驗(yàn)室里的其他設(shè)備沒有了直接聯(lián)系。一只電解電容跨接在電池的引線上,這可消除電池電感可能導(dǎo)致的諧振問題。轉(zhuǎn)換器的負(fù)載是一只并聯(lián)10μFMLCC電容的1Ω電阻,這可為之提供3A的負(fù)載,同時(shí)對高頻信號的阻抗又是極低的。輸入線靠電池一側(cè)的接地端通過一只100?的電阻和實(shí)驗(yàn)臺的地連接在一起,這就給整個(gè)電路提供了一個(gè)參考地,其阻抗很像EMC測試中的LISN網(wǎng)絡(luò)。
自制的EMI電流測試工具可被安置在電源輸入線和輸出線上。在本文中,我們是用示波器來觀看測量到的高頻電流信號,它能顯示出轉(zhuǎn)換器開關(guān)切換期間的高頻小信號。對于這種重復(fù)出現(xiàn)的開關(guān)切換信號而言,使用示波器的FFT功能進(jìn)行計(jì)算并看到測量電流中的各種頻率成分是可能的。這種方法雖然不如頻譜分析儀那么精確,但仍然不失為一種非常實(shí)用的工具,可在簡單電路的分析中提供判斷依據(jù)。
輸入電容的放置
實(shí)驗(yàn) 1 :將 CIN 放置在遠(yuǎn)離 IC 的地方。
圖 16 中的 PCB 布局呈現(xiàn)了一種很差的輸入電容放置方法,這將在切換回路中引入很大的寄生電感。(此布局中還有額外的間隙以增加回路的面積。)
我們首先通過測量輸入線上的共模電流來對輻射噪聲做一次常規(guī)的檢查。
從圖 17 右側(cè)顯示的波形可以看到,共模電流是出奇地大,而且在很寬的整個(gè)頻段上都可看到。
我們可以用環(huán)形天線在PCB上方搜索輻射場以發(fā)現(xiàn)共模電流的源頭所在。當(dāng)環(huán)形天線移動到輸入環(huán)路的上方時(shí),示波器在低頻至高200MHz的頻段上顯示出巨大的輻射噪聲,參見圖18。我們也同時(shí)看到開關(guān)切換波形上出現(xiàn)很高的過沖和振鈴信號,這些信號實(shí)際上已經(jīng)超過了IC的耐壓規(guī)格。這些狀況說明錯(cuò)誤的輸入電容放置位置可以導(dǎo)致很高的輻射和巨大的振鈴信號。
假如將同樣的測試在背面為地線層的板子上進(jìn)行,我們將看到這種擁有地線層的大型CIN回路帶來的輻射要遠(yuǎn)低于單面板上的結(jié)果,開關(guān)切換所帶來的振鈴信號也要低一些。參見圖19。
大回路上的電流形成的高頻磁場會在地線層里生成渦旋電流,由渦旋電流所形成的磁場與原磁場的方向是相反的,從而可以抵消一部分原磁場。地線層離回路越近,抵消的效果就越好。
實(shí)驗(yàn) 2 :將 CIN 靠近 IC 放置
我們繼續(xù)使用單面 PCB,并將 CIN 放置到靠近 IC 的地方,這樣就形成了比較小的 CIN 回路。參見圖 20。
開關(guān)切換過程中的過沖和振鈴信號的幅度都降低了大約 50%,輻射的強(qiáng)度下降了大約 10dB,頻帶寬度擴(kuò)展到了 300MHz。
上述實(shí)驗(yàn)最重要的結(jié)論是確認(rèn)了更好地放置 CIN 可以改善開關(guān)切換波形上的過沖和振鈴信號的幅度,還能降低高頻輻射。
在RT7297CHZSP中,芯片底部的散熱焊盤是沒有和晶圓內(nèi)核連接在一起的,所以在PCB布局中將銅箔和散熱焊盤連接在一起并不能縮短CIN回路。它的上橋MOSFET和下橋MOSFET通過多根邦定線連接到VIN和GND端子,因而可以通過這兩個(gè)端子形成最短的回路。
實(shí)驗(yàn) 3 :直接在 IC 的 VIN 端子和 GND 端子之間增加額外的 10nF 小電容
圖 22 顯示出了電容的放置方法,現(xiàn)在的 CIN 回路就通過 IC 的引腳、內(nèi)部的邦定線和 0603 規(guī)格的電容形成了。
從實(shí)驗(yàn)結(jié)果來看,開關(guān)切換波形上的過沖實(shí)際上已經(jīng)消失了,但還存在低頻的振鈴信號。為了看清信號,測試天線也不得不再靠近PCB一些,其結(jié)果顯示高頻噪聲已經(jīng)消失,但在大約25MHz的地方出現(xiàn)了一個(gè)大的低頻尖峰。
這種低頻諧振常因不同諧振回路中的兩只電容因并聯(lián)而發(fā)生諧振所導(dǎo)致,這種問題常常發(fā)生在EMI問題解決過程中,其回路和諧振都需要被定位才能排除。在此案例中,諧振發(fā)生在10nF電容和4nH的寄生電感上(大約3mm的導(dǎo)體長度),它們形成了大約25MHz的諧振信號。此諧振回路由0603電容、IC引腳、邦定線和PCB銅箔路徑構(gòu)成,其長度大約為3mm。解決這個(gè)問題的辦法是在10nF小電容的旁邊并聯(lián)一個(gè)具有稍高ESR的22μF1206電容。采用經(jīng)過優(yōu)化了的CIN放置方法的PCB布局設(shè)計(jì)如下圖24所示。
采用了上述的方案以后,單面板上的開關(guān)切換波形上的過沖已經(jīng)完全消失,經(jīng)環(huán)形天線檢測到的輻射噪聲也很低,它在經(jīng)過 FFT 運(yùn)算后得到的波形幾乎都在本底噪聲水平上。
假如我們在這個(gè)時(shí)候再用高頻電流探頭對輸入線上的共模電流進(jìn)行測量,我們將可看到共模噪聲已經(jīng)下降很多。與第一次測量的結(jié)果相比,某些頻率上的差異多于30dB,說明整個(gè)板子的輻射水平已經(jīng)很低了。